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We present comparisons among Brownian dynamics simulations, molecular 
dynamics simulations, and electron paramagnetic resonance spectroscopic 
studies of the Heisenberg spin-exchange reaction between nitroxide free radicals 
at near-infinite dilution in near-critical and supercritieal ethane. We discuss the 
effects of correlations in the solute-solute and solvent-solute radial distribution 
functions on the rate constants for collision and reaction. We find that the 
enhancements in the local density of solvents around solutes strongly affect the 
rate constant for solvent-solute encounters. This result holds implications for 
those reactions where collisional-energy transfer from solvent to solute is the 
rate-limiting step. While the rate of collisions between solutes is strongly affected 
by solute-solute correlations for all densities, the reaction rate constant is 
affected by such local density augmentations only for certain combinations of 
density and collision lenght scale. Rate constants estimated computationally and 
experimentally show the same qualitative trend as a function of density. Colli- 
sion lifetimes estimated from the simulations show a strong density dependence. 
These lifetimes reflect the competing effects of the intermolecular force and the 
potential of mean force and are distinctly bimodal at the higher densities. 
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1. INTRODUCTION 

The choice of solvent is of vital importance in the rational design of any 
reaction system. The large compressibility of a supercritical fluid enables 
wide variation in solvation with modest changes in temperature and 
pressure. This has spurred the study of reactions in supercritical fluids. 
However, there is a lack of the fundamental understanding of the solvent 
effects of supercritical fluids on chemical reactions. 

The molecular structure of supercritical fluid mixtures has received 
much recent attention. Specifically, there has been a focus on the 
phenomenon of local density augmentation of solvent molecules around 
solute molecules present at near-infinite dilution and of local density 
augmentation of solutes around other solute molecules. Several spec- 
troscopies (UV[1, 2], photo ionization [3 ,4] ,  fluorescence [5, 6], and 
EPR [7])  have shown that such local density effects exist. Further evidence 
has been provided by integral equation theory [8, 9] and molecular 
dynamics simulations [ 10] of supercritical fluid systems. 

Such solvent-solute and solute-solute excesses could be expected to 
influence reaction rates, yet experiments do not always show this to be the 
case. Both solvent-solute and solute-solute local density enhancement 
effects have been observed in some, but not all, reaction studies to date 
[11-16]. We have attempted to provide a microscopic understanding of 
the effect of local densities (both solvent-solute and solute-solute) on rapid 
bimolecular reactions by comparing molecular dynamics and Brownian 
dynamics simulations of an infinitely fast reaction that models Heisenberg 
spin-exchange and electron paramagnetic resonance (EPR) spectroscopic 
studies of the same reaction. 

2. METHODOLOGY AND BACKGROUND 

Heisenberg spin-exchange is a rapid bimolecular reaction in which 
radicals possessing opposite spin states exchange spins by colliding with 
each other. More details of this reaction can be found elsewhere [17]. In 
our group, EPR studies of spin-exchange between di-butyl nitroxide 
(DTBN) radicals in near-critical and supercritical ethane have been carried 
out [ 18]. In our simulations, both DTBN and ethane were approximated 
as spherical molecules each possessing Lennard-Jones (L-J) size and 
energy parameters a and e, respectively. O'Brien and co-workers have 
estimated the L-J parameters for DTBN [ 19], while the L-J parameters of 
ethane are readily available in the literature [20]. 

NVE molecular dynamics (MD) and equilibrium Brownian dynamics 
(BD) simulations of DTBN in ethane were carried out over a wide range 
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of densities. Details of these simulations are given elsewhere [ 19, 21 ]. All 
parameters were made dimensionless using solute L-J parameters [22].  All 
simulations were carried out at a reduced temperature of T r = 1.084 (which 
corresponds to a dimensionless temperature T* =0.6336 in solute L-J 
units). Note that the simulations were carried out at near-infinite dilution 
of the solute (mole fractions between 10 -2 and 10-3). Hence, the critical 
temperature and critical density used for computing reduced variables are 
those of the pure Lennard-Jones solvent [23],  which in solute L-J units 
are Tc, LJ - -  0.5846 and p*, LJ = 1.6375. 

The essence of  the Brownian dynamics technique lies in representing 
the solvent as an effective viscosity field, i.e., neglecting solvent structure. 
Therefore, the choice of an effective simulation box length is completely 
independent of solvent critical fluctuation lengths. The solute diffusivities 
that are input to BD simulations must, however, be picked carefully. We 
precomputed these diffusivities in long MD runs. In these MD runs, care 
was taken to ensure that the simulation box lengths at near-critical condi- 
tions were considerably larger than the pure solvent correlation length 
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[ 19]. This ensured that diffusivities from these simulations were essentially 
unaffected by critical density fluctuations. 

The local density in a fluid can be estimated in the following fashion: 

plO¢al(r) 3 [r rZr ~r~.,. ~ g ( r ) - - l ]  dr 
p b u l ~  - -  1 - f  3 3 ( 1 ) 

( r  - -  rmin) 

Here rmi n is the separation distance where the radial distribution function 
g( r )  becomes significantly nonzero, usually at about r * =  0.9. 

Local solvent-solvent, solute-solvent, and solute-solute density 
enhancements estimated by applying the Percus-Yevick closure to the 
Ornstein-Zernike equation [24] at a reduced density of p r=0 .6  are 
illustrated in Fig. 1. There is significant enhancement for all three cases, but 
the solute-solute enhancement is the largest. Also, the local density enhan- 
cement is largest at a value of r* not much different from the solute L-J 
radius, suggesting that such enhancements should significantly affect the 
rate of those reactions whose cybotactic length scale is comparable to the 
van der Waals radius of the reactants. 

3. RESULTS 

In our simulations, we considered the case of a reaction with infinitely 
fast kinetics in which every collision results in reaction. We probed the 
influence of solvent-solute clustering on the rate of solvent-solute collisions 
in a nonreacting environment. Solute-solute local density effects on colli- 
sion and reaction rate constants were studied. In addition, we measured the 
lifetime of collisions between solutes over a wide density range. In our 
simulations, we have defined a collision as occurring when two colliding 
molecules reach a specified distance R* from each other. By varying this 
encounter distance, we have estimated quantities of interest both as a func- 
tion on density and of collision length scale. 

3.1. Solvent--Solute Local Density Effects 

The rate constant for bimolecular collisions from kinetic theory [25 ] 
is given by I- 21.26. 27 ]: 

, _ , 2 m i +  1 gu(r) (2) (k¢ol)U-- 2n(Rc ) ~ \m/  R~* 

where * (k¢ol) u is the dimensionless rate constant for collisions, R* is the 
dimensionless collision length scale, and gu(r)/&, This result was derived 
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for solute-solute collisions in a structureless solvent. We attempted to show 
that Eq. (2) holds for solvent-solute collisions as well, in the following 
fashion. The rate constant for solvent-solute collisions was normalized by 
2(R*)2(2T*n)°5( 1 + mi/mj) °'5 and was plotted as a function of the collision 
radius for three different densities as shown in Fig. 2. It can be seen that 
this ratio is quantitatively equal to the solute-solvent radial distribution 
function g12(r). Thus, for collision length scales not very different from the 
Van der Waals radius, the rate of solvent-solute collisions is strongly 
influenced by the local solvent density. For large collision radii, however, 
the radial distribution function decays to unity and the collision rate is 
unaffected by local density effects. 
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Fig. 2. The effect of collision length scale r* (non- 
dimensionalized in solute L-J units) on the normalized 
solvent-solute collision rate constant. The line is gt2(r) 
obtained from the same simulation runs, while the filled 
circles represent the rate constants. There is exact quan- 
titative agreement for all three densities shown. 
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3.2. Solute-Solute Local Density Effects 

BD simulations were carried out to estimate reaction rate constants. 
An isotopic reaction scheme was used [27] in which a statistical concen- 
tration gradient was created by preventing molecules that have reacted 
from reacting again. For such diffusion-limited reactions, the 
Smoluchowski theory predicts the reaction rate constant as [28]: 

k .... t = 4 n R c D  (3) 

where R~* is the sum of the collision radii and D* is the sum of the diffu- 
sion coefficients of the two reactants. 

Reaction rate constants were estimated as a function of density and 
collision radius. To test the radial dependence of the reaction rate, the rate 
constant normalized by the modified kinetic theory result of Eq. (2) is 
plotted against the collision radius as shown in Fig. 3. Also plotted is the 
rate constant from Smoluchowski theory normalized by Eq. (2). At the 
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Fig. 3. Comparison of the effect of collision length scale r* on the 
solute-solute collision rate constants and reaction rate constants. All 
of the rate constants have been normalized by the modified kinetic 
theory result of Eq.(2). Also shown by dashed lines is the 
Smoluchowski limit modified by Eq. (2). The open circles represent 
the collision rate constants and the closed circles represent the reac- 
tion rate constants. The solid line shown represents the modified 
kinetic theory prediction. These comparisons are shown over three 
densities. 
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lowest density, the normalized reaction rate constant falls on the line from 
kinetic theory predictions. At the intermediate density, it differs from the 
values both from kinetic theory and from the Smoluchowski theory, while 
at the highest density, it is well predicted by the Smoluchowski theory. This 
is reasonable since at high densities, the equilibrium radial distribution 
function (RDF) for the unreacted molecules (i.e., those still available for 
reaction) is determined by the combination of reaction and diffusive trans- 
port limitation. Despite this, the equilibrium RDF for all the reacted and 
unreacted solute molecules taken together is still the original equilibrium 
RDF. The high density result for the unreacted molecules shows little or no 
short-range structure and, hence, the reaction rate shows no local struc- 
tural effects. At the low densities however, the time scale required for reac- 
tion is large compared to the time required for the fluid to relax into its 
equilibrium structure and hence the effect of g22(r) is clearly seen. 

However, no such variations are seen for the rate constants for 
solute-solute collisions, which are also shown in Fig. 3 normalized by Eq. 
(2). As can be seen, these collision rate constants are exactly predicted from 
the modified kinetic theory over all density ranges. Collision rates are 
always influenced by the equilibrium solute-solute radial distribution func- 
tion g2~_(r) since nonreactive collisions do not influence the equilibrium 
structure of the fluid. 

3.3. Comparison with EPR Measurements 

The materials and methods used to carry out EPR spectroscopic 
measurements of spin-exchange are described elsewhere [ 18 ]. Reaction rate 
constants measured as a function of density from the BD simulations for a 
collision radius of r -- 1.0 022 are plotted alongside the rate constants from 
EPR as shown in Fig. 4. It can be seen that the rate constants from 
experiments and simulations qualitatively resemble each other, in that they 
exhibit the same density dependence in the limiting regimes of reaction 
behaviour (plateau at low density, linear with inverse density at high den- 
sity). To provide a quantitative comparision, two quantities are needed: (a) 
the cybotactic radius for spin-exchange and (b) the reaction probability. 
The cybotactic length scale for spin-exchange is estimated to be between 
one and three hard-sphere diameters [29]. The reaction probability is a 
function of the lifetime of collisions between reactants, with an upper 
bound of one-half [18]. Note that the computationally determined rate 
constants assume a reaction probability of unity. 

One of the keys to understanding solvent structural effects on reac- 
tions is to know what the real collision length scale required for reaction 
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Fig. 4. Comparison of the reaction rate constants from BD simulations 
and EPR studies as a function of l/pr. The BD results are for a collision 
radius of r =  1.0tr22, The horizontal line represents the kinetic theory 
result of Eq. (2), while the skewed line corresponds to the Smoluchowski 
prediction of Eq. (3). EPR results have been scaled by a factor of two; 
this factor is the lower bound on probability effects on the Heisenberg 
spin-exchange reaction. 

is. Quite obviously, different reactions have different collision length scales; 
based on our results therefore, the effect of local densities on different reac- 
tions is different. To predict and understand the kinetic effects of solvents 
by comparing and contrasting the various experimental studies of reac- 
tions, it is essential to have precise quantitative estimates of the collision 
length scale required for all of the reaction systems being studied. 

3.4. Coll is ion Lifet imes 

We measured the lifetimes of individual solute-solute collisions in BD 
simulations over the density range from pr=0.1455 to pr=1.455 for a 
collision radius of r = 1.57~22. Collision lifetime distributions obtained, as 
shown in Fig. 5, are strongly density dependent. At the intermediate den- 
sities the lifetime are distinctly bimodal. Note that the distributions have 
been normalized such that the integral of each distribution is unity. 

For the purpose of illustration, we have marked as "A" and "B" the 
two peaks that appear in the lifetime distributions. At the lower densities, 
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Fig. 5. A plot of the collision lifetime distributions over the density range of Pr = 0.1455 to 
Pr = 1.455. The ordinate represents the frequency of the collision lifetimes, while the abscissa 
denotes the collision lifetime rco u (in solute L-J units), All distributions are plotted on the 
same scale. These lifetimes were estimated for a collision radius of r = 1.57az2. Interestingly, 
most  of  the density space where the lifetime distributions are distinctly bimodal falls in the 
near- and supercritical region for this collision length scale. 

peak B is very prominent, while at the higher densities, it all but disappears 
and peak A is dominant. At the low densities, when molecules move ther- 
mally rather than diffusively, the tendency to sit in each other's potential 
well is very strong since the effect of the mean field is small. Most collisions 
that occur at these densities are mediated by the intermolecular interaction, 
and this causes the single peak B in the lifetimes. This result is consistent 
with observations of gas-phase clustering which predict such trends in the 
collision lifetime [ 30 ]. 

At the higher densities, however, it is the potential of mean force that 
is significant. This increases the duration of collisions. It can be seen from 
Fig. 5 that the lifetime distributions at high densities exhibit long tails. Our 
observations are consistent with the first passage time results for estimating 
average survival lifetimes in diffusive processes [31]. If we consider that 
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Z'(t) denotes the survival probability and the mean time for diffusion is 
given by the Einstein relation [32], we can write [33] 

27(t) = exp( - 6Dt/R~) (4) 

Equation (4) represents an exponential decay of the survival probability 
distribution with time. Hence, peak A is qualitatively predicted from this 
relation. For small values of the diffusivity (i.e. high densities), the prob- 
ability distribution is significantly nonzero even at long times. 

The lifetime distributions may thus be thought to reflect the counterac- 
ting influences of the intermolecular potential and the potential of mean 
force. While the low-density and high-density effects on collision lifetime 
are understood, the bimodel behavior that occurs at the intermediate den- 
sities is not. The occurrence of the bimodal region is due to the fact that 
neither the intermolecular force nor the potential of mean force clearly 
dominates at the intermediate densities. It is interesting to note that for 
reactions requiring collision length scales that are not much larger than the 
hard-sphere value, the density range where this bimodal behavior occurs 
falls in the near- and supercritical region. 

4. CONCLUSION 

The rate of solute-solvent collisions has been shown to be directly 
related to the radial distribution function g~2(r). Even though this treat- 
ment was for transport-limited reactions, this result has implications for 
those reactions where the rate-determining step is collisional-energy trans- 
fer between solvent and reactant [34]. It has also been shown that correla- 
tions in the radial distribution function g22(r) strongly affect solute-solute 
collision rates. They affect reactions rates only at the lower densities and 
for certain collision radii. We have also compared our rate constants from 
BD simulations with EPR spectroscopic measurements; the two sets of rate 
constants display the same qualitative trend as a function of density. Colli- 
sion lifetimes estimated from the simulations display a strong density 
dependence. They are distinctly bimodal at the higher densities and reflect 
the competing effects of the intermolecular force and the potential of mean 
force. 
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